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TORSIONAL VIBRATION CHARACTERISTICS OF A 

1/5-SCALE MODEL OF SATURN SA-1 

By John J. Catherine 
Langley Research Center 

SUMMARY 

The r e s u l t s  of a t o r s i o n a l  v ib ra t ion  t e s t  of a 1/5-scale model of t h e  
Saturn SA-1 launch vehic le  supported by an eight-cable suspension system simu- 
l a t i n g  a f r ee - f r ee  boundary condition a r e  presented here in .  The v ib ra t ion  
modes, frequencies, and damping were obtained a t  t h r e e  weight conditions cor- 
responding t o  d i f f e r e n t  po in t s  i n  t h e  launch t r a j e c t o r y .  These conditions were 
103, 48, and 0 percent of t he  booster propel lan t  load a t  l i f t - o f f .  
of s t i f f n e s s  of t he  eight-cable suspension system were employed a t  t h e  
#-percent weight condition. 

Two values 

The r e s u l t s  presented cover t h e  frequency range of 20 t o  70 cps and show 
t h e  unusual frequency spectrum and mode shapes of t h e  Saturn vehicle which 
r e s u l t  from i t s  c lus te red  configuration. The f i r s t  t o r s ion  mode and a v a r i e t y  
o f  booster modes (modes i n  which t h e  various outer  tanks and engines of the  
booster stage move r e l a t i v e  t o  each o ther )  a r e  presented. Comparisons, snowing 
good agreement, of t h e  model t e s t  r e s u l t s  with r e s u l t s  from both  a f u l l - s c a l e  
t o r s i o n a l  v ibra t ion  t e s t  and a cursory a n a l y t i c a l  study a r e  a l s o  presented. 

INTRODUCTION 

Several  i nves t iga t ions  concerning t h e  v ib ra t ion  c h a r a c t e r i s t i c s  of a 
1/5-scale dynamic r ep l i ca  model of t he  Saturn SA-1 vehic le  have been conducted 
a t  t he  Langley Research Center. The purpose of t hese  inves t iga t ions  has been 
t o  explore the  f e a s i b i l i t y  of using r ep l i ca  models t o  obta in  v ib ra t ion  da ta  
which a r e  necessary f o r  t h e  design of complex launch vehic le  s t ruc tu res  and 
cont ro l  systems and a l s o  t o  inves t iga t e  t h e  v ib ra t ion  p rope r t i e s  of c lus te red  
tank configurations.  P a r t  of these  inves t iga t ions  consisted of determining t h e  
l a t e r a l  v ibra t ion  c h a r a c t e r i s t i c s  of t h e  Saturn model over a range of weight 
conditions with two d i f f e r e n t  suspension systems (two cable and e igh t  cab le) .  
These r e s u l t s  a r e  presented i n  references 1 and 2, respectively.  I n  addi t ion ,  
s tud ie s  have been made comparing t h e  r e s u l t s  shown i n  references 1 and 2 w i t h  
r e s u l t s  of a ground v ib ra t ion  survey of a f 'ull-scale Saturn SA-1 conducted a t  
Marshall Space F l i g h t  Center. These s tud ie s  a r e  presented i n  reference 3 .  
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I n  this r epor t ,  t h e  t o r s i o n a l  v ib ra t ion  c h a r a c t e r i s t i c s  of t h e  Saturn 
model a r e  presented. Torsional resonant frequencies, mode shapes, and damping 
of t h e  l /5 -sca le  Saturn a r e  presented f o r  a range of weight conditions simu- 
l a t i n g  flight t i m e s  of t h e  f u l l - s c a l e  vehic le  from l i f t - o f f  t o  booster burnout. 
These r e s u l t s  were obtained with an eight-cable suspension system and a r e  com- 
pared with the  r e s u l t s  of t o r s i o n a l  v ib ra t ion  tes ts  on t h e  f u l l - s c a l e  Saturn 
SA-1 dynamic t e s t  vehic le .  I n  addition, t h e  r e s u l t s  obtained are compared with 
an a n a l y t i c a l  study based on a f in i t e -d i f f e rence  method. 

SYMBOLS 

f 

G 

Ga 

g 

I 

J 

L 

m 

n 

xO 

xn 

P 

frequency, cps 

shearing modulus of e l a s t i c i t y ,  p s i  

g r a v i t a t i o n a l  acce lera t ion ,  386 i n .  /sec2 

damping f a c t  o r  

r o t a t i o n a l  mass moment of i n e r t i a ,  in-lb-sec2 

t o r s i o n a l  s t i f f n e s s  constant, i n . 4  

length,  i n .  

ma s s , l b  - se c2/ i n .  

number of cycles used i n  determining damping 

i n i t i a l  v ib ra t ion  amplitude 

v ib ra t ion  amplitude a f t e r  n cycles 

mass density,  l b - ~ e c : / / n . ~  

Subscripts:  

F f u l l  sca le  

M model 

DESCRIFTION OF m ~ / ~ - S C A L E  SATURN MODEL 

The l /?-scale model of Saturn SA-1 i s  shown suspended i n  t h e  v ibra t ion  
t e s t  tower i n  f i gu re  1, and a sketch of t h e  model showing i t s  dimensions and 
t h e  nomenclature used herein i s  shown i n  f igu re  2. Rotational mass moment of 
i n e r t i a  and s t i f f n e s s  d i s t r i b u t i o n s  were ca lcu la ted  from t h e  known dimensions 
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and mater ia l  p rope r t i e s  of t h e  model and a r e  presented i n  f igu res  3 and 4, 
respec t ive ly .  A d e t a i l e d  descr ip t ion  of t h e  model i s  given i n  reference 1, and 
only a b r i e f  discussion i s  given herein.  

The Saturn model cons i s t s  of t h ree  stages and a conical payload section 
having an o v e r a l l  l ength  of 388.6 inches ( 3 2  ft ,  4.6 i n . )  and a maximum diam- 
e t e r  of 32 inches. 
l i f t - o f f  weight condition. Water w a s  used i n  t h e  model t o  simulate t h e  mass of 
t he  f u e l  and lox.  The model water l e v e l  w a s  adjusted t o  obtain t h e  properly 
scaled t o t a l  weight. 

It weighs about 7400 pounds when b a l l a s t e d  t o  simulate t h e  

The p r inc ipa l  load-carrying s t ruc tu re  of t h e  booster ( f i r  st  stage) con- 
sists of a 21-inch-diameter center  tank which i s  f i rmly  attached t o  t h e  b a r r e l  
a t  t h e  lower end and t o  t h e  sp ider  a t  t h e  upper end. Eight 14-inch-diameter 
ou ter  tanks a r e  arranged around t h e  center  tank and are attached t o  t h e  out- 
r i gge r s  and t h e  spider beam by two j o i n t s  a t  each end of each tank. A s  with 
t h e  f u l l - s c a l e  design, t h e  four  a l t e r n a t i n g  ou te r  tanks have upper j o i n t s  which 
can be adjusted t o  transmit longi tudina l  loads and thus  share t h e  load with t h e  
center  tank; these  tanks a r e  r e fe r r ed  t o  as lox  tanks.  The o ther  four outer 
tanks  have an upper j o i n t  which w i l l  not transmit longi tudina l  loads; these  
tanks  a re  r e fe r r ed  t o  a s  f u e l  tanks.  

The f i r s t  stage i s  equipped with e ight  simulated engines. These engines 
were designed t o  simulate t h e  center-of-gravity loca t ion ,  t o t a l  weight, and t h e  
moment of i n e r t i a  about t h e  gimbal point of the f u l l - s c a l e  engines. A l l  t he  
engines were r i g i d l y  f ixed  a t  t h e  gimbal po in t .  No attempt w a s  made t o  dupli-  
ca te  t h e  mounting of t h e  f u l l - s c a l e  engines. The na tu ra l  frequencies of t h e  
engines were determined experimentally and the  r e s u l t i n g  values a re  given i n  
t a b l e  I .  Two values of inboard engine frequencies were experienced a s  a r e s u l t  
of a d i f fe rence  i n  th ickness  of t h e  to r s ion  beam through which the  inboard 
engines were mounted. (See f i g .  5 . )  An ove ra l l  view of t h e  to r s ion  beam i s  
shown i n  f i g u r e  6 .  

The second stage cons i s t s  of an inner water ba l las t  Tank connected t o  a 
c y l i n d r i c a l  ou ter  s h e l l  by means of e igh t  radial  truss assemblies. The second 
stage i s  attached a t  t h e  lower end t o  t h e  second-stage adapter s t ruc tu re  only 
a t  t h e  junctures of t h e  e igh t  r a d i a l  t r u s s e s  with t h e  ou te r  s h e l l .  The outer  
s h e l l  then forms t h e  p r i n c i p a l  s t r u c t u r a l  member of t he  second stage and sup- 
p o r t s  t h e  w e i g h t  of t h e  t h i r d  stage and payload section. The b a l l a s t  tank 
which makes up 70 percent of t h e  second-stage weight when water f i l l e d  i s  sup- 
ported within t h e  outer  s h e l l  s t ruc tu re .  The t h i r d  stage cons i s t s  simply of a 
water b a l l a s t  tank; t h i s  tank  supports t he  nose cone weight (including the  
weight of a simulated payload) of 1 4  pounds. 

The r o t a t i o n a l  moment of i n e r t i a  of t h e  ind iv idua l  empty stages about t h e  
longi tudina l  cen ter  l i n e  w a s  determined experimentally by using a b i f i l a r  pen- 
dulum method and t h e  r e s u l t s  a r e  shown i n  t a b l e  11. 
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APPARATUS 

Eight -Cable Suspension System 

A close-up view of t h e  Saturn model showing t h e  eight-cable suspension 
system and the  shaker o r i en ta t ion  i s  presented i n  f igu re  6. 
t h e  pe r t inen t  suspension system dimensions i s  shown i n  f igu re  7 and a de ta i l ed  
descr ip t ion  of t h e  suspension system i s  given i n  reference 2. 
cable" i s  used as a convenient name f o r  th i s  suspension, t h e  p r i n c i p a l  f e a t u r e  
of which i s  t h e  support of t h e  model by cables attached a t  t he  ends of the  
e igh t  ou t r iggers .  

A sketch showing 

The term "eight- 

A p a r a l l e l  bank of s i x  springs w a s  used i n  s e r i e s  with each cable s e t  f o r  
t e s t s  a t  a11 t h e  weight conditions studied. 
weight condition only, a s e r i e s  of t e s t s  were performed with each spring 

I n  addi t ion ,  with t h e  48-percent 

1 1 
4 2 

replaced by a r i g i d  - inch  by - - i n c h  c ross  section, 2- inches long 

l i n k .  For t h e  model t e s t s  described herein,  t hese  two types of suspension a r e  
termed spring suspension and r ig id - l ink  suspension, respec t ive ly .  Turnbuckles 
i n  s e r i e s  with the  cables were used t o  d i s t r i b u t e  t h e  model weight evenly among 
the  e ight  support po in ts .  The t o t a l  w e i g h t  and weight d i s t r i b u t i o n  were deter-  
mined from load c e l l s  i n  s e r i e s  with t h e  cables and springs as shown i n  f i g -  
u r e  7. 

The springs and cables of t h e  suspension system used i n  t h i s  t e s t  were 
i d e n t i c a l  with those used i n  t h e  l a t e r a l  t e s t s  of t h e  model; t h e i r  spring con- 
s t a n t s  a r e  given i n  reference 2. 

Shaker System 

Two electromagnetic shakers having a capacity of 50 vector  pounds of 
force  each were used t o  exc i t e  t o r s i o n a l  v ib ra t ion  of the model. They were 
or ien ted  1800 apa r t  d r iv ing  i n  t h e  same t angen t i a l  d i r ec t ion  perpendicular t o  
the  to r s iona l  a x i s  ly ing  i n  t h e  plane of engines 3 and 7. (See i l l u s t r a t i o n  
i n  t a b l e  I.) Torque w a s  applied through a beam held i n  place by the  mounting 
of t h e  inboard engines t o  t h e  b a r r e l  assembly of t he  model a t  s t a t i o n  20. A 
close-up view of t h i s  attachment i s  shown i n  f i g u r e  5 .  The to r s ion  beam had 
a b a l l a s t  weight of 90 pounds and a ca lcu la ted  r o t a t i o n a l  moment of i n e r t i a  
of 43.5 in-lb-sec2. 
f a i r i n g s  and pipings not included on the  model.) 
by e l e c t r i c a l l y  adding t h e  output of load c e l l s  a t  t h e  two shaker loca t ions .  
A shaker and a load c e l l  at tached t o  the  to r s ion  beam i s  shown i n  figure 8. 
The shaker force  was mul t ip l ied  by a moment a r m  of 29 inches t o  obtain t h e  
dr iv ing  torque. 

(Ba l l a s t  weight simulated t h e  weight of aerodynamic 
The shaker force  w a s  obtained 

The two electromagnetic shakers employed i n  t h i s  inves t iga t ion  were con- 
t r o l l e d  by one o s c i l l a t o r .  The shaker ampl i f ie rs  were operated i n  phase with 
each o ther  and were balanced by equalizing t h e  force  from each of t h e  two load 
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c e l l s .  The frequency of t h e  exc i t a t ion  force  was determined from a counter 
ac t iva t ed  by t h e  o s c i l l a t o r .  

I n  st  rumentat ion  

Torsional v ib ra t ion  de f l ec t ions  and damping of t he  model were determined 
from strain-gage accelerometers having na tu ra l  frequencies ranging from 90 t o  
300 cps and damping of about two-thirds c r i t i c a l  damping. The loca t ions  of t h e  
accelerometers f ixed  t o  t h e  model are shown i n  f igu re  9. The angular ro t a t ion  
along t h e  center tank and upper stages w a s  determined from t h e  t angen t i a l  
acce le ra t ions  a t  t h e  c y l i n d r i c a l  surface.  Two accelerometers were diagonally 
loca ted  a t  each s t a t i o n .  These accelerometers were mounted with t h e i r  sensi- 
t i v e  a x i s  or ien ted  tangent t o  t h e  model's c y l i n d r i c a l  surface as shown i n  f i g -  
u r e  10. A t  s t a t i o n  343, t h e  outputs from t h e  two accelerometers were combined 
e l e c t r o n i c a l l y  so t h a t  r o t a t i o n  could be d i r e c t l y  recorded. (Transfer function 
da ta  were obtained by t h i s  means.) 
pu t s  were recorded ind iv idua l ly .  The angular r o t a t i o n  of t he  outer  tanks,  out- 
r iggers ,  and engines r e l a t i v e  t o  the  model center l i n e  w a s  determined from 
accelerometers such as a r e  shown i n  f igu re  11. A l l  acce le ra t ions  were recorded 
on oscil lographs.  I n  addi t ion  t o  these  f ixed  accelerometers, an accelerometer 
provided with a vacuum attachment w a s  used a s  a por tab le  pickup t o  determine 
t h e  d i r ec t ion  of motion of t h e  sp ider  beam, booster ou ter  tanks, and engines. 

A t  t he  o ther  s t a t ions ,  accelerometer out- 

S t r a i n  gages were placed on a l l  four  booster outer l ox  tanks t o  measure 
s t a t i c  longi tudina l  load. 
of t h e  midstation of each tank and were used t o  measure t h e  compressive load 
r e su l t i ng  from adjustment of t he  lox-tank upper j o i n t s .  

Four s t r a i n  gages were placed around t h e  periphery 

PROCEDW 

The model w a s  o r ien ted  and centered i n  t h e  t e s t  tower by ad jus t ing  the  
turnbuckles i n  t h e  suspension system u n t i l  t h e  model weight was divided a s  
evenly as possible among a l l  e igh t  suspension po in t s .  The model's v e r t i c a l  
a x i s  was then checked by t r a n s i t .  The lox-tank upper j o i n t s  were adjusted 
u n t i l  t h e  outer  lox tanks supported 40 percent of t h e  upper stage weight or 
180 pounds per tank. The remaining 60 percent w a s  supported by t h e  booster 
cen ter  lox tank. 
boos te r  ou te r  tanks and i n  the  booster cen ter  lox  tank, respec t ive ly .  

Pressures of 5 p s i  and of 10 p s i  were maintained i n  the  

For a l l  t e s t s  reported herein,  t h e  second and t h i r d  s tages  of t h e  model 
were maintained f u l l y  b a l l a s t e d  with water, and d i f f e r e n t  vehicle configura- 
t i o n s  were obtained by varying t h e  water l e v e l  i n  t h e  booster.  Results were 
obtained f o r  t h r e e  weight configurations with t h e  spr ing  suspension and one 
weight configuration with r ig id - l ink  suspension. The measured model weight 
during these  t e s t s  i s  given i n  the  following table. The values do not include 
t h e  weight of t h e  out r igger  attachment l i n k s  (2.0 pounds each), t h e  cables 
(5 .0  pounds each p a i r ) ,  or t h e  spring bank (23.3 pounds each) . 
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Booster water 
l e v e l ,  percent f u l l  Spring 

suspension 

2415 

7300 
4770 

Simulated 
f l i g h t  condition Rigid-link 

suspension 

4765 

c 
Burnout 

Maximum dynamic response 
L i f t  o f f  

0 
48 
100 

The water l eve l  a t  t h e  l i f t - o f f  weight condition i s  termed 100-percent- 
f u l l  condition; however, t he  boos te r  tanks were not completely f u l l .  The 
designat ions of t h e  o ther  weight conditions are  given i n  terms of percent of 
t h e  l i f t - o f f  weight. For a given water l eve l ,  t he  l e v e l  of t he  water was t h e  
same i n  a l l  nine tanks of t h e  booster .  

A t  each weight condition, t h e  to r s ion  rigid-body suspension-system fre-  
quency was determined and t h e  r e s u l t s  are shown i n  t a b l e  I11 and figure 12. 

The approximate frequencies o f  t he  model resonances were determined by 
varying the  frequency of t h e  shaker input force  from about 20 cps t o  about 
70 cps while recording t h e  outputs  of the f ixed  accelerometers on osci l lographs.  

Each resonance, t hus  discovered, whether occurring a t  t h e  nose cone o r  i n  
the  booster  stage,  was tuned t o  maximum response where t h e  frequency, t h e  mode 
shape, and t h e  damping were recorded. The frequencies and mode shapes were 
determined from the  recordings of t h e  response of t h e  f ixed and portable  accel-  
erometers. The damping of t h e  model was obtained by cu t t i ng  the  input s igna l  
t o  t h e  shaker a t  t h e  resonant frequency of i n t e r e s t  and recording the output of 
se lec ted  f ixed accelerometers on t h e  osci l lograph.  The amplitudes were read 
from osci l lographs and p lo t t ed  on semilogarithmic paper with a s t r a i g h t  l i n e  
f a i r e d  through t h e  points .  The damping f ac to r  g was obtained from the  
r e l a t ion  : 

XO 

xn 
g = -  log, - 

nfi 

where 

xO 

xn 

i n i t i a l  v ibra t ion  amplitude 

v ib ra t ion  amplitude a f te r  n cycles  

RESULTS AND DISCUSSION 

Table I11 summarizes t h e  t o r s i o n a l  resonant frequencies and associated 
damping obtained f o r  t h ree  weight conditions of t h e  1/5-scale model of 



Saturn SA-1 suspended by an eight-cable suspension system. The t h r e e  weight 
conditions correspond t o  d i f f e r e n t  f l ight t i m e s  of t h e  f u l l - s c a l e  vehicle:  
booster f u l l ,  l i f t - o f f ;  booster 48 percent f u l l ,  maximum dynamic pressure; 
booster empty, burnout. 

The va r i a t ion  of resonant frequencies with booster water level  i s  sum- 
marized i n  f i g u r e  12. The frequency-response curves and associated mode shapes 
f o r  the  booster f u l l ,  48 percent f u l l ,  and empty a r e  shown i n  f igu res  13 t o  18, 
19 t o  27, and 28 t o  31, respec t ive ly .  

Frequencies, Modes, and Damping 

A comparison of t he  frequency response measured a t  s t a t i o n  343 a t  t h e  
th ree  weight conditions, shown i n  f igu res  13, 19, and 28, i nd ica t e s  a sub- 
s t a n t i a l  change i n  t h e  response of t h e  model due t o  a va r i a t ion  of t h e  water 
l e v e l  i n  t h e  boos te r .  For example, t h e  frequency of t h e  f i r s t  t o r s ion  mode was 
increased some 53 percent by decreasing t h e  booster water l e v e l  from a f u l l  t o  
an empty weight condition. This l a rge  v a r i a t i o n  of frequency i s  pr imar i ly  
brought about by an associated change i n  t h e  r o t a t i o n a l  mass moment of i n e r t i a  
of t he  e igh t  r a d i a l l y  posit ioned outer  tanks of t h e  booster.  The outer  tanks 
a r e  located 18.7 inches from t h e  center of t h e  model and each contains approx- 
imately 500 pounds of water a t  t h e  boos te r  f u l l  condition. 

Damping values shown i n  t a b l e  I11 were obtained from decay decrements 
determined f o r  each mode. However, a value of g i s  presented only f o r  those 
modes where a clean decay w a s  observed. The f a c t o r s  shown i n  t a b l e  111 a r e  
average values obtained from two o r  more s t a t i o n s  on t h e  model. It i s  seen 
t h a t  t he  model damping decreased a t  t h e  f irst  to r s ion  mode a s  t h e  booster water 
l e v e l  w a s  increased. 

The mode shapes a r e  presented following t h e  frequency-response curve asso- 
c ia ted  with a p a r t i c u l a r  weight condition and correspond with t h e  labeled 
response peaks described on these  curves. The t e s t s  were plagued with 
suspension-cable resonances a t  t he  high end of t he  frequency range a t  t h e  th ree  
weight conditions and f o r  t h i s  reason many of t h e  response peaks occurring i n  
t h i s  a rea  were not analyzed. 

A study of t he  mode shapes presented ind ica t e s  an a r r ay  of mode shapes 
pecu l i a r  t o  the  c lus te red  design of t h e  booster and t h e  r i g i d  mounting of t h e  
engines. Only a few of t h e  mode shapes obtained a r e  analogous t o  those of a 
tw i s t ing  sha f t .  
nodal c ross  sec t ions  of the  center  l i n e . )  Two mode shapes were obtained t h a t  
were comparable i n  t h i s  respect:  
mode. I n  both cases, a l l  t h e  booster tanks ro ta ted  i n  the  same d i r ec t ion .  

(Modes of a tw i s t ing  shaf t  a r e  determined by t h e  number of 

t h e  r i g i d  body mode and t h e  f i r s t  t o r s ion  

I n  many of t h e  modes obtained, t h e  booster outer-tank angular ro t a t ions  
are predominately i n  t h e  opposite d i r ec t ion  from t h e  de f l ec t ions  of t he  center  
tank. By the  convention of reference 1, these  modes a r e  termed c l u s t e r  modes. 
Other coupled modes were predominately outer-tank and engine modes which were 
i d e n t i f i e d  by t h e  general  shape and magnitude of de f l ec t ion  of t h e  engine and 
outer-tank components. 
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The mode shape f igu res  show t o r s i o n a l  normalized de f l ec t ions  of t he  model 
main s t ruc tu re  and t y p i c a l  booster ou te r  f u e l  and lox  tanks.  Main s t ruc tu re  
r o t a t i o n  includes t h e  r o t a t i o n  of t h e  corrugated b a r r e l ,  t he  booster cen ter  
tank, p a r t  of t he  sp ider  s t ruc tu re ,  t h e  second-stage outer  s h e l l ,  and the  th i rd -  
stage tank. 
with corresponding ou t r igge r s  a r e  shown. Also, t h e  d i r ec t ions  of t h e  outer  
tanks  a t  a p a r t i c u l a r  model s t a t i o n  and of t h e  engines a t  s t a t i o n  0 a r e  ind i -  
cated by arrows. (Arrows a re  omitted where t h e  d i r e c t i o n  of motion w a s  not 
d i sce rn ib l e . )  Many of t h e  modes show a six-point survey of t h e  spider beam 
measured along t h e  beam p a r a l l e l i n g  t h e  to r s ion  axis. 

I n  addi t ion ,  t h e  de f l ec t ions  of an inboard and an outboard engine 

Rigid body_ mode.- The r i g i d  body mode shapes are not presented herein; 
however, t h e i r  frequency va r i a t ion  with water l e v e l  i s  shown i n  f igu re  12. It 
should be noted t h a t  t h e  rigid-body mode shapes were s t r a i g h t  l i n e s .  The sus- 
pension frequency w a s  wel l  below t h e  f irst  to r s ion  frequency of the  model as 
indicated by t h e  r a t i o s  of t h e  first to r s ion  frequency t o  t h e  r i g i d  body fre- 
quency. 
and boos te r - fu l l  configurations,  respec t ive ly .  

Values of t hese  r a t i o s  of 50 and 46.5 were obtained f o r  booster-empty 

~- F i r s t  t o r s ion  mode.- The f i rs t  t o r s i o n a l  mode shapes f o r  booster f u l l ,  
48 percent f u l l ,  and empty a r e  shown i n  f igu res  14, 23, and 30, respec t ive ly .  
Each mode shape has a s ing le  node within t h e  booster stage. The outer  tanks 
a re  r o t a t i n g  i n  phase with t h e  center  tank. 

F i r s t  cluster-mode.- The f i r s t  c l u s t e r  mode shapes f o r  t h e  th ree  weight 
conditions are shown i n  f igu res  15, 26, and 31. There i s  no node on the  main 
s t ruc tu re ;  however, t h e  outer  tanks a re  r o t a t i n g  out of phase with the  center 
tank. 
and 31, respec t ive ly)  t h e  f l e x i b i l i t y  of t h e  sp ider  beam and out r iggers  has a 
pronounced influence on t h i s  mode shape. 
and 3l), and the  out r iggers  appear t o  be moving out of phase from the  main 
s t ruc tu re  ( f i g .  31). The r o t a t i o n  of t he  ends of  t h e  sp ider  beam i s  out of 
phase with t h e  center - l ine  ro t a t ion ,  measured along the  beam. Since t h e  
outer  tanks a r e  posit ioned 20 inches from t h e  center  l i n e  on the  spider beam 
and on t h e  out r iggers ,  t h e i r  motion was f a i r e d  through these poin ts .  

A t  t h e  booster 48 percent f u l l  and empty weight conditions ( f i g s .  26 

The sp ider  beam bends ( f i g s .  26 

Booster outer-tank and enggne - modes.- Figure 16 shows the  outer-tank 
second bending mode a t  41.6 cps with t h e  booster f u l l .  
out of phase with t h e  outer f u e l  tanks.  This mode was observed during the  
la te ra l  v ib ra t ion  t e s t  a s  described i n  reference 2. A coupled f irst  tors ion  
outer-tank second bending mode a t  45.6 cps i s  shown i n  f i gu re  17. 
one node on t h e  main s t ruc tu re ,  and the  outer  l ox  and f u e l  tanks appear t o  be 
p a r t i a l l y  i n  phase with each o the r .  Figure 18 shows a coupled f i r s t  tors ion-  
c l u s t e r  mode occurring a t  55.4 cps. The main s t ruc tu re  has one node and the  
outer  tanks a r e  out of phase with t h e  center  tank. 

The outer  lox  tanks a r e  

There i s  

For t h e  booster-48-percent-full condition, two values of suspension system 
s t i f f n e s s  were t e s t e d .  The e f f e c t  of these suspension system changes on t h e  
frequencies and modes of t h e  model were found t o  be  of negl ig ib le  order.  For 
t h i s  reason, t h e  mode shapes associated with t h e  r i g i d - l i n k  suspension system 
have not been presented i n  t h i s  repor t ;  only t h e  mode shapes with t h e  spring 
suspension a r e  presented. A l l  r i g id - l ink  data a r e  shown i n  t ab le  111. 
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Figure 20 shows a booster mode occurring a t  20.8 cps. The outer  lox and 
f u e l  tank motions are opposite from one another. This mode w a s  a l s o  observed 
i n  the  l a t e r a l  t e s t s  ( r e f .  2) and w a s  termed a "booster mode." Figure 21 shows 
an outer  lox-tank mode; t h e  main s t ruc tu re  has one node. Figure 22 shows a 
f i rs t  to r s ion  mode a t  29.6 cps; however, t h i s  frequency corresponds t o  t h e  res -  
onant frequency of engine number 4 as shown i n  t a b l e  I. Accordingly, t he  minor 
peak of t h e  double response peak shown i n  f igu re  19 i s  termed an engine mode. 

The mode shapes shown i n  f i g u r e s  24 and 25 a r e  characterized by a strong 
response i n  t h e  booster s tage  and by very weak upper-stage motion. Figure 25 
shows a mode shape a t  50.2 cps possessing f ea tu res  of t h e  f irst  c l u s t e r  mode; 
however, the  spider beam motion ind ica t e s  l a t e r a l  bending of t h e  model center  
l i n e .  Accordingly, t h i s  mode i s  termed a coupled torsion-bending mode. An 
outer-tank second bending mode coupled with t h e  f i r s t  t o r s i o n  mode occurs a t  
63.1 cps and i s  shown i n  f i g u r e  27. 

The engine response was very strong f o r  many of t h e  modes obtained during 
t h i s  inves t iga t ion ,  and, i n  p a r t i c u l a r ,  a t  t h e  booster empty configuration 
where it subs t an t i a l ly  influenced t h e  frequency response measured a t  s t a -  
t i o n  343. 
of t he  response peaks shown i n  f igu re  28 with the  outboard engine resonant 
frequencies shown i n  t a b l e  I. The normalized value of engine motion shown i n  
f i gu re  29 i l l u s t r a t e s  t h e  magnitude of the  engine response. 

A d e f i n i t e  co r re l a t ion  may be observed by comparing t h e  frequencies 

Since t h e  f u l l - s c a l e  engine mounting w a s  not duplicated f o r  t he  model 
and t h e  engine motion had a d e f i n i t e  influence on t h e  model response, an 
inves t iga t ion  w a s  made t o  determine the  importance of engine attachments. 
i nves t iga t ion  consisted of bracing t h e  fou r  outboard engines together.  The 
bracing consisted of e igh t  p ieces  of 3/4-inch 0.d. thin-wall  s t e e l  tubing con- 
necting the  upper and lower ends of t he  fou r  outboard engines together a s  shown 
i n  f igu re  32. The frequency response obtained a t  s t a t i o n  343 with t h e  engines 
braced and t h e  booster empty i s  shown i n  f igu re  33. The e f f e c t  of a l t e r i n g  t h e  
engine attachment can be seen i n  f igu re  33; not only were coupled modes and 
peaks eliminated, bu t  t h e  magnitude of t he  f irst  to r s ion  response was also 
increased by about 200 percent with a 10-percent decrease i n  t h e  frequency of 
t h e  peak. 

This 

The mode shapes assoc ia ted  with t h e  braced engines a r e  shown i n  f igu res  34 
and 35. The p r i n c i p a l  e f f e c t  of r e s t r i c t i n g  t h e  engine motion was t o  produce 
l a r g e r  amplitudes of the main s t r u c t u r e  and t o  contain t h e  response of t he  
engines within t h e  o v e r a l l  range of response of t h e  model. 

This study ind ica t e s  t h e  importance of properly sca l ing  engine supports 
i n  order t o  def ine  adequately model response c h a r a c t e r i s t i c s .  

Nonlinear Studies 

The v a r i a t i o n  of t o r s ion  de f l ec t ion  and resonant frequency a t  s t a t i o n  343 
with torque input i s  shown i n  f igu re  36 f o r  outer-tank compressive force  values 
of 0, 900, 1800, and 3600 pounds with t h e  booster f u l l .  These values were 
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obtained by varying t h e  shaker frequency with a given torque input u n t i l  m a x i -  
mum de f l ec t ion  of t h e  f irst  response peak occurred. 
model de f l ec t ion  i s  not a l i n e a r  function of torque input and t h a t  f o r  a given 
value of torque input,  t h e  amplitude increases  with an increase  i n  t h e  outer- 
tank compressive force .  However, t h e  amplitude does not appear t o  increase 
with an increase  of compressive fo rce  above 1800 pounds ( t o t a l  upper-stage 
weight). Figure 36(b) shows t h a t  frequency decreases with an increase i n  
torque input bu t  shows l i t t l e  v a r i a t i o n  with increas ing  outer-tank compressive 
force .  

Figure 36(a) shows t h a t  

A s imi la r  t e s t  was performed with t h e  booster 48 percent f u l l .  However, a 
double response peak w a s  experienced a t  t h e  f irst  to r s ion  response, as shown i n  
f igu re  19 ( t h e  s m a l l  response peak corresponds t o  t h e  na tu ra l  frequency of 
engine number 4) ,  and the  l i n e a r i t y  s tud ie s  were performed on both peaks. 
These r e s u l t s  a re  shown i n  f igu re  37. 
s t a t i o n  343 a t  t h e  minor response peak, i nd ica t e s  t h e  same type of nonl inear i ty  
a s  obtained with t h e  booster f u l l  with the  exception t h a t  t h e  response f l a t -  
tened out beyond c e r t a i n  torque l e v e l s  which increased a s  t h e  outer-tank com- 
press ive  load decreased. The response remained f l a t  with an increase i n  torque 
input u n t i l  t he  major response peak was reached. Also, t h e  frequency decreased 
with an increase i n  torque input and increased a t  a given torque input with an 
increase of compressive force  i n  t h e  outer tanks as shown i n  f i gu re  37 (c ) .  A t  
t h e  major response peak, t h e  r e s u l t s  obtained a r e  contrary t o  those previously 
obtained. 
t i o n  of torque inpu t .  Also, f i gu re  37(d) shows t h a t  t h e  frequency decreases 
r a the r  than increases  with an increase i n  outer-tank compressive force  a t  a 
given torque inpu t .  This condition might i nd ica t e  t h a t  nonl inear i ty  i s  a 
property of a p a r t i c u l a r  weight condition o r  frequency. 
t h e  two response peaks tended t o  coalesce a s  t h e  outer-tank compressive load 
was increased. 

Figure 37 (a ) ,  de f l ec t ion  measured a t  

Figure 37(b) i nd ica t e s  t h a t  t h e  model de f l ec t ion  i s  a l i n e a r  func- 

It w a s  observed t h a t  

Comparison with Ful l - sca le  Results 

Results of a t o r s i o n a l  ground v ibra t ion  survey of a f u l l - s c a l e  Saturn 
SA-1 vehicle conducted a t  t h e  Marshall Space F l igh t  Center a r e  presented i n  
reference 4. The frequencies obtained from t h i s  survey a re  p lo t t ed  i n  f i g -  
ure  12, where they have been multiplied by t h e  sca le  f a c t o r  of 5 ,  f o r  compar- 
i son  with model r e s u l t s  
lowing r e l a t ionsh ips :  

The sca le  f a c t o r  of 5 was determined from the  f o l -  

Length: 

Material p rope r t i e s :  
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Mass: 

Rotational mass moment of i n e r t i a :  

Torsional s t i f f n e s s  constant: 

Torsional frequency: 

- 'M = 
f F 

Figure 12 shows f a i r l y  good agreement between t h e  f u l l - s c a l e  and model 
f i r s t  to r s ion  and f i r s t  c l u s t e r  frequencies.  The f u l l - s c a l e  rigid-body f r e -  
quency was approximately 100 percent higher than t h e  model rigid-body frequency. 
The f u l l - s c a l e  f irst  to r s ion  frequency w a s  higher than t h e  model f irst  to r s ion  
frequency and th i s  difference increased with an increase i n  booster water l e v e l .  
A t  t h e  booster f u l l  condition, t h e  f u l l - s c a l e  frequency was 10 percent higher 
than the  model frequency a s  compared w i t h  1 .5  percent a t  t h e  empty condition. 
T h i s  d i f fe rence  may be a t t r i b u t e d  t o  a d i f fe rence  i n  t h e  torque l e v e l  used 
between the  two model t e s t s ,  and/or may be a function of t h e  outer  lox-tank 
compressive load. 

Model and f u l l - s c a l e  damping f a c t o r s  a r e  compared i n  t a b l e  I V .  This f i g -  
ure  shows t h a t  t h e  model and f u l l - s c a l e  damping values a r e  of t h e  same order 
of magnitude, except f o r  t h e  value of 0.18 given f o r  t h e  f u l l - s c a l e  vehicle a t  
t h e  booster empty condition. ( N o  explanation was given i n  r e f .  4 f o r  t h i s  high 
value of damping.) 

Comparison with Analy t ica l  Results 

Calculated fundamental t o r s i o n a l  frequencies a t  t h r e e  weight conditions 
The ca lcu la t ion  w a s  based on a a r e  presented i n  f i g u r e  12 (diamond symbol). 

f i n i t e -d i f f e rence  method i n  which t h e  model w a s  considered f ree- f ree .  The 
model w a s  subdivided i n t o  30 m a s s  moments of i n e r t i a  concentrated along t h e  
longi tudina l  a x i s  and interconnected by ca lcu la ted  t o r s i o n a l  s t i f f n e s s  f a c t o r s .  
The ana lys i s  w a s  performed f o r  two cases: (1) t h e  outer-tank i n e r t i a s  d i s -  
t r i b u t e d  along t h e  longi tudina l  a x i s  of t he  booster and (2) t h e  outer-tank 
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i n e r t i a s  brought i n t o  t h e  system a t  t h e  tank ends. Good agreement of f r e -  
quencies with tes t  results w a s  obtained i n  t h e  f irst  case where t h e  outer-tank 
i n e r t i a s  were d i s t r i b u t e d  along t h e  ax i s .  (See f i g .  12 . )  The r e s u l t s  from t h e  
second case showed poor agreement f o r  t he  boos te r - fu l l  and maximum-dynamic- 
pressure  configurations,  14.25 cps and 20.25 cps, respec t ive ly ;  but good cor- 
r e l a t i o n  f o r  t h e  empty configuration, 39.02 cps. It would seem t h a t  t he  
outer-tank i n e r t i a s  should be lumped a t  t h e  tank a d s  because of t h e i r  a t t ach -  
ments i n  t h e  booster; however, t h e  model response ind ica t e s  a node i n  t h e  
booster area t h a t  renders much of this i n e r t i a  i ne f f ec tua l .  

The i n e r t i a  of t h e  water on t h e  center l i n e  of t h e  model i n  t h e  th ree  
s tages  was neglected. The booster center l o x  tank was t h e  only s t r u c t u r a l  mem- 
b e r  considered i n  ca l cu la t ing  t h e  r o t a t i o n a l  s t i f f n e s s  i n  t h e  booster tank area .  

Since no branches were included i n  the  mathematical model used herein,  t he  
outer-tank resonances were not expected t o  be ca lcu la ted .  

CONCLUDING REMARKS 

An inves t iga t ion  of t he  t o r s i o n a l  v ibra t ion  c h a r a c t e r i s t i c s  of a 1/5- sca le  
model of Saturn SA-1 supported by an eight-cable suspension system has been 
performed a t  t h e  Langley Research Center and t h e  r e s u l t s  a r e  reported herein.  
The r e s u l t s  cons is t  of t h e  experimental resonant frequencies, t h e  associated 
mode shapes, and t h e  damping of t he  1/5-scale model obtained a t  t h ree  f l i g h t  
conditions of t he  f u l l - s c a l e  vehicle over a frequency range of 20 cps t o  70 cps. 

These r e s u l t s  show the  unusual response c h a r a c t e r i s t i c s  of t h e  Saturn 
model associated with t h e  c lus te red  construction of t h e  booster stage.  They 
show how the  e l a s t i c i t y  of t h e  spider beam a l t e r e d  t h e  phasing of the outer 
tank with respect t o  the  center l i n e  of t h e  model. Many of t h e  response char- 
a c t e r i s t i c s  of t he  model a r e  defined by the  independent bending of t he  outer  
tanks,  engines, and ou t r igge r  supporting members. The r e s u l t s  a l so  show t h e  
importance of properly sca l ing  engine support s t ruc tu res  i n  order t o  determine 
adequately t h e  model response c h a r a c t e r i s t i c s .  

A l a rge  change i n  t h e  r o t a t i o n a l  mass moment of i n e r t i a  i s  obtained by 
varying t h e  booster water l e v e l .  The f i r s t  to r s ion  mode was increased about 
53 percent by varying t h e  booster water l e v e l  from a f u l l  t o  an empty weight 
condition. 

The f irst  to r s ion  mode and a v a r i e t y  of booster modes were the  only modes 
observed within t h e  frequency range of 20 cps t o  70 cps. Comparisons with f u l l -  
sca le  r e s u l t s  show f a i r l y  good agreement f o r  t h e  f irst  to r s ion  and f i r s t  c l u s t e r  
frequencies.  A simplified mathematical model study based on a f i n i t e  d i f fe rence  
method gave good r e s u l t s  f o r  t h e  f irst  to r s ion  mode only. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley S ta t ion ,  Hampton, V a . ,  December 11, 1964. 
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TABU3 I.- ENGINE FREQUENCIES 

-_  
32.1 
29.6 
34.9 
35.0 
i- 

Engine 

85.7 
52.0 
80.0 

. - 

F i r  s t  stage 
Second stage 
Third s tage  (includes nose cone) 

-~ . . ~ ~~~ 

TABLE 11.- EXPERIMENTAL ROTATIONAL MOMENT OF INERTIA 

Moment of i n e r t i a  
about longi tudina l  ax i s ,  

in-lb-sec2 

430 
160.5 

21.3 
_. - 
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W L E  111.- TORSIONAL FREQUENCIES AM) ASSOCIATED DAMPING 

Engines not braced Mode Engines braced 

Rigid body 

F i r s t  tors ion 

First  cluster 

Coupled bending to r s ion  

Outer-tanks second 
bending 

Coupled f irst  tors ion ,  
outer-tank second 
bending 

Booster modes 

Engine modes 

Frequency, 
CPS 

0.775 

38.9 

63.5 

29.2 
31.2 
34.3 

0.0276 

Frequency 
CPS 

35.4 

62.5 0.0249 

Booster 48-percent full 

Spring suspension Rigid-link suspension 

Frequency, Damping,  Frequency, 7 Damping, 

0 * 585 

30.2 

56.2 

50.2 

63.1 

20.8 
27.2 
45.5 

29.66 

0.0190 

0.589 

30.3 

57.2 

50.4 

64.0 

20.9 
27.3 
45.0 

g 

0.0146 

~ ~~ 

Booster full 

Spring suspension 

Frequency, 
CPS 

0.545 

25-36 

28.2 

41.6 

46.0 

55.4 

Damping, 
B1 

0.0155 

.0342 

.0071 

.0243 



Fe-- 
Fir st  tors ion  
F i r s t  c lu s t e r  

TABLE 1 V . -  COMPARISON OF F U L L - S C U  WITH 

1/5-scm MODEL DAMPING, g 

- 

Booster f u l l  

+Ell - s c a l e  
. _  

Booster 48 percent f u l l  

Model - 1  i l l  sca le  
____  

0.019 0.016 

-- I 

- 

Booster empty 

Model fill scale  

0.028 
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Figure 1.- The l/>-scale model of Saturn SA-1. L-61-4079 



Model station 

-1 3 8 8.6 

Payload nose cone I \  
344.6 347.0*-\ __--- 

Third-stage water bollast tank 
24-inch diameter 

Third-stage adapter structure 

301.2 
290.3 

Second-stage water ballast tank 
22-inch diameter 

Radial truss assemblies 

Second-stage outer shell 
44 - i  nch diameter 

Figure 2. - General configuration and nomenclature of 1/5-scale model of Saturn SA-1. 
A l l  dimensions a r e  i n  inches. 
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Figure 3 . -  Distribution of rotary moment of i n e r t i a  of 1/5-scale Saturn model. 
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Figure 5.- Torsion beam held i n  place by mounted inboard engines. L-63-5448 .I 



Figure 6 .- Eight-cable suspension attachments t o  out r iggers  and shaker or ien ta t ion .  L-63-5432 .1 
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Figure 7.- Eight-cable suspension system. All dimensions a re  i n  inches.  
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Figure 8.- Typical shaker attachment. L-63-5431 .I 
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Figure 9.- Fixed accelerometer locations on 1/5-scale Saturn model. A l l  dimensions 
are in inches. 



Figure 10.- Typical accelerometer installation for upper stages and center lox tank. L-63-5429.1 
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Figure 11.- Booster outer tanks and out r iggers  showing accelerometer attachments. 
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Figure 12 . -  Variat ion of resonant frequency with booster water l e v e l .  

28 



h First torsion mode p 12- 
t 
3 
Q 
C .- 
W 
3 g 10- 
+ 
L 
W 
Q 
rc, a- 

c 
0 

u 
W 

._ 
c 

- 
LC 

- 
0 c 
0 ._ 

20 30 40 50 60 70 

Frequency, cps 

Figure 13. - Frequency response of s ta t ion  343. Spring suspension; booster f u l l .  
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Figure 14.- F i r s t  to rs ion  mode. Spring suspension; booster f u l l .  
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Figure 15.- F i r s t  c lus te r  mode. Spring suspension; booster f u l l .  
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Figure 16. - Outer-tank second bending mode. Spring suspension; booster f u l l .  
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Figure 17.- Coupled f i r s t  torsion, outer-tank second bending mode. Spring suspension; booster f u l l .  
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Figure 18.- Coupled f i rs t  tors ion-cluster  mode. Spring suspension; booster f u l l .  
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Figure 20.- Booster mode. Spring suspension; booster 48 percent full. 
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Figure 21.- Outer lox-tank mode. Spring suspension; booster 48 percent f u l l .  
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Figure 22.- Engine mode. Spring suspension; booster 48 percent f u l l .  
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Figure 23.- F i r s t  tors ion mode. Spring suspension; booster 48 percent fu l l .  
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Figure 24.- Booster mode. Spring suspension; booster 48 percent full. 
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Figure 25. - Coupled torsion-bending mode. Spring suspension; booster 48 percent f u l l .  
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Figure 26.- F i r s t  c lus te r  mode. Spring suspension; booster 48 percent full. 
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Figure 27.- Coupled f i r s t  torsion, outer-tank second bending mode. Spring suspension; booster 48 percent fu l l .  
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Figure 28.- Frequency response a t  s ta t ion  343. Spring suspension; booster empty. 
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Frequency : 38.90 cps 
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Figure 30.- F i r s t  tors ion mode. Spring suspension; booster empty. 
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Figure 31.- F i r s t  c lus te r  mode. Spring suspension; booster empty. 
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Figure 32.- Outboard engines braced. L-63-5449 
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Figure 33.-  Comparison of frequency response a t  s ta t ion 343 with and without engines braced. 
Spring suspension; booster empty. 
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Figure 34.- F i r s t  to rs ion  mode w i t h  engines braced. Spring suspension; booster empty. 
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Figure 35.- F i r s t  c luster  mode with engines braced. Spring suspensionj booster empty. 
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Figure 36.- Variation of resonant frequency and amplitude with increased torque a t  f i r s t  t o r s ion  mode. 
Spring suspension; booster full .  
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